ON THE SUFFICIENT CONDITIONS OF STABILITY
 IN THE THEORY OF A HORIZONTAL GYROCOMPASS

(O DOSTATOCHNYKH USLOVIAKR USTOICHIVOSTI V TEORII
 GIROGORIZONTKOMPASS)

```
PMM Vol.27, No.6, 1963,.p. 1106
            V. F. LIASHENKO
        (Moscow)
(Received June 3, 1963)
```

This note develops and sharpens the results obtained in [1].
If the moment generated by a spring connecting two gyroscopes satisfies [2] the condition

$$
\begin{equation*}
N(\varepsilon)=-\frac{4 B^{\prime 2}}{m l R} \cos \varepsilon \sin \varepsilon \tag{1}
\end{equation*}
$$

and if otherwise the assumptions are the same as those stated in [1], then the energy integral has the form
$V \equiv \frac{1}{2} A p^{2}+\frac{1}{2} B q^{2}+\frac{1}{2} C r^{2}+I \dot{\varepsilon}^{2}-\frac{1}{2} \frac{4 B^{\prime 2}}{m l R} \sin ^{2} \varepsilon-(F-m v \omega) l \psi_{3}-m v l \Omega \theta_{3}-$ $-\Omega\left[A p \psi_{1}+(B q+H) \psi_{2}+C r \psi_{3}\right]-\omega\left[A p \vartheta_{1}+(B q+H) \theta_{2}+C r \theta_{8}\right]=C_{1}\left(\omega=\frac{v}{R}\right)$

Here $I \dot{\xi}^{2}$ is the kinetic energy of the gyroscopes with their casings as they rotate about the axes of the casings. This energy has been neglected in [1].

The position of equilibrium of the system occurs at the following values of the coordinates:

$$
\begin{equation*}
\alpha=0, \quad \beta=\beta^{*}, \quad \gamma=0, \quad \delta=\delta^{*} \tag{3}
\end{equation*}
$$

and β^{*} and δ^{*} satisfy the equations
$(C-B)\left[{ }^{1 / 2}\left(\Omega^{2}-\omega^{2}\right) \sin 2 \beta^{*}+\omega \Omega \cos 2 \beta^{*}\right]-2 B^{\prime} \cos \left(\varepsilon_{0}+\delta^{*}\right)\left(\Omega \cos \beta^{*}-\omega \sin \beta^{*}\right)=$ $=-(F-m \omega \omega) l \sin \beta^{*}-m v l \Omega \cos \beta^{*}$
$-\left(\omega \cos \beta^{*} \not+\Omega \sin \beta^{*}\right) 2 B^{\prime} \sin \left(\varepsilon_{0}+\delta^{*}\right)=N\left(\varepsilon_{0} \not \delta^{*}\right)$

Here ε_{0} is a particular value of ε which is the angle of separation of the gyroscopes satisfying the relation

$$
\begin{equation*}
\varepsilon_{0}=\cos ^{-1} \frac{m l v}{2 B^{\prime}} \tag{5}
\end{equation*}
$$

If the motion described by the equations (3) is unperturbed, then we can obtain for it [1] the sufficient conditions of stability in the form

$$
\begin{equation*}
c_{11}>0, \quad c_{22}>0, \quad c_{11} c_{33}-c_{13}^{2}>0, \quad c_{22} c_{44}-c_{24}^{2}>0 \tag{6}
\end{equation*}
$$

Here

$$
c_{11}=1 / 2 \omega\left\{-m l / R \Omega \sin \beta^{*}-A \omega+\left[B\left(\omega \cos \beta^{*}+\Omega \sin \beta^{*}\right) \uparrow\right.\right.
$$

$$
\left.\left.\not+2 B^{\prime} \cos \left(\varepsilon_{0}+\delta^{*}\right)\right] \cos \beta^{*}+C\left(\omega \sin \beta^{*}-\Omega \cos \beta^{*}\right) \sin \beta^{*}\right\}
$$

$$
c_{22}=1 / 2\left\{(C-B)\left[\left(\Omega \cos \beta^{*}-\omega \sin \beta^{*}\right)^{2}-\left(\Omega \sin \beta^{*}+\omega \cos \beta^{*}\right)^{2}\right]+[(F-m v \omega) l\right.
$$

$$
\left.\left.+\omega 2 B^{\prime} \cos \left(\varepsilon_{0}+\delta^{*}\right)\right] \cos \beta^{*}-\Omega\left[m v l-2 B^{\prime} \cos \left(\varepsilon_{0} \not \downarrow \delta^{*}\right)\right] \sin \beta^{*}\right\}
$$

$c_{33}=1 / 2\left[(C-A)\left(\Omega \cos \beta^{*}-\omega \sin \beta^{*}\right)^{2}+(F-m v \omega) l \cos \beta^{*}-m v l \Omega \sin \beta^{*}\right]$ (7) $c_{44}=1 / 2\left[-\left(4 B^{\prime 2} / m l R\right) \cos 2\left(\varepsilon_{0} \uparrow \delta^{*}\right)+2 B^{\prime} \cos \left(\varepsilon_{0}+\delta^{*}\right)\left(\Omega \sin \beta^{*} \uparrow \omega \cos \beta^{*}\right)\right]$

$$
\begin{gathered}
c_{13}=1 / 2 \omega\left[(C-A)\left(\omega \sin \beta^{*}-\Omega \cos \beta^{*}\right)-m L R \Omega\right] \\
c_{24}=1 / 22 B^{\prime} \sin \left(\varepsilon_{6}+\delta^{*}\right)\left(\Omega \cos \beta^{*}-\omega \sin \beta^{*}\right)
\end{gathered}
$$

Let us mention that the equations (4) have a solution $\beta^{*}=0$, if $N(E)$ satisfies [3] the condition

$$
\begin{equation*}
N(\varepsilon)=\cdots \frac{4 B^{\prime 2}}{m l R(1+\chi)} \cos e \sin \varepsilon \quad\left(\chi=\frac{(C-B)}{m l R}\right) \tag{8}
\end{equation*}
$$

Here the value of δ^{*} is determined by the equation

$$
\begin{equation*}
2 B^{\prime} \cos \left(\varepsilon_{0}+\delta^{*}\right)=m l v(1 \nLeftarrow \chi) \tag{9}
\end{equation*}
$$

The integral (2) retains its form except for the coefficient of $\sin ^{2} \varepsilon$, where in the denominator appears an additional factor ($1-X$).

In this case the inequalities (6) assume a simple form

$$
\begin{align*}
m l v & {\left[1+\frac{(C-A)}{m l R}\right]>0, \quad F l\left[1+\chi\left(\frac{\Omega}{v}\right)^{2}\right] } \tag{10}
\end{align*}>0 \quad\left(v=\sqrt{\frac{g}{R}}\right)
$$

The sufficient conditions of stability (6) or (10) do permit degenerations similar to those shown in [1].

BIBL IOGRAPHY

1. Koshliakov, V.N. and Liashenko, V.F., Ob odnom integrale v teorii girogorizontkompass (On an integral in the theory of a horizontal gyrocompass). PMM Vol. 27, No. 1, 1963.
2. Ishlinskif, A. Iu., K teorii girogorizontkompass (On the theory of a horizontal gyrocompass). PMM Vol. 20, No. 4, 1956.
3. Liashenko, V.F., K teorii girogorizontkompasa (On the theory of a horizontal gyrocompass). PMM Vol. 27, No. 2, 1963.
